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Abstract Constitutivemodels for bone remodeling are established frommicromechanical analyses at the scale
of individual trabeculae defining the representative unit cell (RUC), accounting for both first- and second-order
deformation gradients. On the microscale, trabeculae undergo apposition of new bone modeled by a surface
growth velocity field driven by a mechanical stimulus identified to the surface divergence of an Eshelby-like
tensor. The static and evolutive first and second gradient effective properties of a periodic network of bone
trabeculae are evaluated by numerical simulations with controlled imposed first and second displacement
gradient rates over the RUC. The formulated effective growth constitutive law at the scale of the homogenized
set of trabeculae relates the (average) first and second growth strain rates to the homogenized stress and
hyperstress tensors. The constitutive model is identified relying on the framework of TIP (thermodynamics of
irreversible processes), adopting a split of the kinematic and static tensors into their deviator and hydrostatic
contributions. The obtained results quantify the strength and importance of strain gradient effects on the overall
remodeling process.

Keywords External and internal remodeling · Trabecular bone · Surface growth · Homogenized strain
gradient growth model · Micromechanics

1 Introduction

The focus of this work is the setting up of a modeling framework accounting for both first- and second-order
deformation gradients, relying on the thermodynamics of surfaces and configurational forces for the simulations
of the evolution of the external bone surface induced by mechanical stimulations. We would in particular show
that strain gradient model allows for the description of microstructure-related size effects which are known to
be important in hierarchically heterogeneous materials like trabecular bones.
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Bone continuously adjusts its mass, architecture, and properties to variations in its mechanical environment, a
process coined bone remodeling and encompassing two recognized distinct mechanisms deserving the names
internal and external remodeling [8]. Internal remodeling is associated with the resorption or reinforcement
of bone material internally, accompanied by the removal and densification of cancellous bone architecture,
without, however, changing the bone overall shape. Opposite to this, external or surface remodeling refers to
the resorption or apposition of new bone material on the external bone surface, resulting in a change of the
external shape of the overall bone structure. These processes strongly influence the overall behavior and health
of the entire body; thus, the ability to perform bone remodeling simulations is of great importance. Such a
need for the setting up of computational models of bone remodeling is particularly obvious in applications
dealing with bone adaptivity, like bone implants and scaffold design (e.g., [13,45]), and furthermore to predict
the outcome of dental or orthodontic treatment, as explained in [14,49].
A clear classification underlying bone change of mass (growth) can be made between volumetric and surface
growth, as underlined in [11,19,25,46]. Volumetric growth takes place in the bulk of the material (occurring
essentially for soft biological tissues), while surface growth is associated with the mechanisms underlying
deposition of mass at a surface, mostly occurring in hard tissues. Epstein [10] lends, however, to think that the
distinction between volumetric and surface growth is not so marked, at least from a kinetic point of view, as
the two mechanisms may simply be two facets of the same reality. A unified vision of volumetric and surface
growth has been brought more recently in Ganghoffer and Sokolowski [19], based on a micromechanical view
of the growth of tissue elements within a host matrix. Furthermore, Ciarletta et al. [6] developed a unified
thermomechanical theory for coupling bulk and surface growth processes with mass transport phenomena
across boundaries and/or material interfaces.
Important size effects are known concerning the elastic behavior of single osteons [32], cortical bone [5,15,
42,49,50], and trabecular bone [21,22,26,27,29,43]. For single osteon, the size effects are attributed to the
compliance of the interfaces separating the laminae. As to trabecular bone, there exists experimental evidence
that the cement lines considered as compliant interfaces account for most of the difference in stiffness between
osteons and the entire bone. If continuum properties vary by more than 20–30% over a distance spanning three
to five trabeculae, a continuum model for the structure is suspect as reported in Harrigan et al. [29]. Although
many continuum models of trabecular bone have been developed over the last two decades under the umbrella
of classical elasticity (e.g., [4,47]), those models indeed ignore microstructure-related scale effects on the
macroscopic mechanical properties. They accordingly do not provide a satisfactory description of the bone
behavior when the microstructural size of bone is comparable to the macroscopic length scale. The main idea
promoted in this work is to incorporate such size effects and microstructural phenomena by employing a strain
gradient continuum theory to describe the evolutive bone microstructure.
The structural hierarchy of materials with microstructures such as trabecular bones plays an important role in
determining their macroscopic mechanical behavior as well as the stress and strain distribution at the macro-
scopic scale. Such microstructural effects become especially pronounced in the vicinity of the bone–implant
interfaces and more generally in zones witnessing high strain gradients. This issue can be investigated using
generalized continuum mechanics theories for bones known to be a heterogeneous material with microstruc-
tural features. A number of phenomenological remedies to the lack of microstructural features (like internal
lengths parameters) of Cauchy (first gradient) elasticity have been proposed in the past decades requiring to
abandon the local action hypothesis of classical continuum mechanics. Such enriched continuum models aim
at incorporating microstructural information, and they follow three possible main strategies: (1) non-local
integral models [12,30]; (2) higher-order gradient models [1,3,9,20,24,36,37,44]; and (3) Cosserat theories
and variants of it, like Koiter model [2,7,21,23].
It is then natural to extend the strain gradient model of the static continuum properties of trabecular bone to
the description of the evolutionary aspects associated with bone remodeling. This is further motivated from
a biological point of view by the fact that osteocytes sense a mechanical signal based on the strain energy
density, which itself includes strain gradient terms. One may nevertheless underline that strain gradient effects
may become pronounced at the level of the osteocytes network when the internal strain gradient lengths are
comparable to the average distance between osteocytes.
A continuum mixture theory with strain gradient terms has been developed recently in Madeo et al. [36]
and extended later on to a visco-poro-elastic model applicable to bio-resorbable grafts [20], whereby the
evolutionary equations for the internal bone density depend on the strain energy density (itself account-
ing for strain gradient terms). This model is phenomenological, and thus, it motivates for the setting up
of micromechanical schemes built at the finer scale of a set of trabeculae to formulate such bone growth
models.
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The continuum gradient enhanced models employed in this work will be accordingly richer than standard
Cauchy continuum, including higher gradients of displacement in the deformation energy, arising from the
introduction of more complicated contact actions depending, e.g., on the curvature of the Cauchy cut (so-called
double forces). The additional terms in the energy involving second gradient of the displacement arise from
the consideration of the geometry of the trabecular architecture. Trabecular bone struts are indeed organized
as a lattice structure oriented along the principal stress directions; this entails that the amount of deformation
energy stored in bending of the trabeculae has to be considered. Thus, classical first gradient theories are not
rich enough and new energy contributions describing the curvature of the trabecular microstructure have to be
considered which naturally leads to strain gradient models.
The main novelty advocated in the present paper is to construct constitutive models for bone remodeling
relying on micromechanical analyses at the scale of a representative volume element of trabecular bone struc-
ture, accounting for both first- and second-order deformation gradients. The static and evolutive homogenized
properties of a periodic network of bone trabeculae shall be evaluated by combining a methodology for the
evaluation of the average kinematic and static variables over a trabecular unit cell and numerical simula-
tions with controlled imposed first and second strain rates. The use of a strain gradient model does explicitly
allow accounting for the precise microstructure of the porous trabecular network, i.e., for the geometric
distribution of porosity and the size of the pores inside the RVE. Notwithstanding, an averaged evolutive
response is accounted for in this model and a precise constitutive form for this parameter in terms of the
apparent density of the constituents is given. In order to explicitly take into account the precise porosity
patterns of the trabecular bone structure, some numerical homogenization procedures will be used of the
type presented in Goda and Ganghoffer [24]. The constitutive model is next identified relying on the frame-
work of thermodynamics of irreversible processes, adopting a split of the kinematic and static tensors into
their deviator and hydrostatic contributions. The formulated effective growth constitutive law at the scale
of the homogenized set of trabeculae therefor relates the average first and second growth strain rates to the
homogenized stress and hyperstress tensors, weighted by a nonlinear function of the evolving apparent den-
sity.
The outline of the paper is as follows: The average kinematics of the strain gradient continuum is elaborated in
Sect. 2. The surface growth kinetics is formulated in Sect. 3 in terms of a relation between the surface growth
velocity and a suitable driving force. A strain gradient bone remodeling theory is exposed in Sect. 4, relying on
amicromechanical analysis performed over 2D sections of 3D real trabecular bone samples. The determination
of the homogenized first and second gradient stiffness tensors for the initial and grown trabecular bone is done
in Sect. 5. A strain gradient remodeling constitutive law for trabecular bone is identified in the framework of
the thermodynamics of irreversible processes and relying on virtual tests in Sect. 6. We conclude in Sect. 7 by
a summary of the present work and ideas for future developments.

2 Homogenized kinematics: effective volumetric growth and elastic tensors

We consider a domain consisting of a growing phase of trabecular bone skeleton in a surrounding matrix phase
(typically the marrow phase). To describe the average kinematics of this domain at the mesoscale, we denote
V the volume of the overall domain, and VB, VM, respectively, the volume of the domains occupied by the
bone tissue and surrounding matrix.

Nowadays image-based meshing offers interesting opportunities based on microstructures scan data to
computational continuum micromechanics methods for material characterization [28,38,40]. This approach
turns out to be very attractive in materials science where the link between macroscopic properties and the
microstructure of a material is sought. The high-resolution micro-computed tomography (μCT) has become
a standard and essential tool for the measurement and visualization of bone structure. Imaging is performed
on femoral neck trabecular bone at a nominal voxel size of 8.8 μm. 3D μCT scan data of cubic sample (9.97
mm/side) are obtained, and the data are straightforwardly segmented using threshold and flood fill tools in
Simpleware’s ScanIP software, as exposed in Fig. 1a. The bone microstructures are based on real 3D images
of trabecular bone, from which a 2D section has been obtained (Fig. 1b).
We next describe the main elements toward the elaboration the first and second gradient average kinematics
for the two-phase domain of the trabecular bone sample.
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Fig. 1 a 3D trabecular bone sample and b 2D section

2.1 First and second gradient average kinematics and statics

The Cauchy stress and hyperstress tensors can be constructed based on the extension of Hill–Mandel equiva-
lence principle, viz.

〈σ : ε̇〉 = 〈σ〉 : 〈ε̇〉 + 〈σ ⊗ x〉 K̇ → � := 〈σ〉 , �S := 〈σ ⊗ x〉 (2.1)

which successively defines the effective Cauchy stress and hyperstress tensors and the second- and third-
order tensors �, �S, respectively. This writing also provides the average kinematics in terms of the average
displacement, the linearized displacement gradient, and the strain gradient tensor, successively given by

U (X) := 〈u(x)〉V(X) ,

E (X) := U (X) ⊗ ∇X := 〈u(x) ⊗ ∇x〉V(X) → ε (X) ≡ 1
2

(
U (X) ⊗ ∇X + U (X) ⊗ ∇X

T
)

K (X) := ε (X) ⊗ ∇X → Kijk = εij,k = εji,k = Kjik

(2.2)

The averaging of the microscopic fields therein indicated by the bracket notaion 〈.〉V(X) is done over a repre-
sentative volume element V (X) centered around the mesoscopic point X. The Cauchy stress and hyperstress
tensors satisfy the following static equilibrium equation (inertia terms can be neglected considering the very
long time scales of the bone remodeling process).

(
� − �s .∇X

)
.∇X + f = 0 (2.3)

with f the body forces, for instance the weight.
We shall rely on the orthogonal irreducible decomposition in the present 2D context to identity the structure

of the kinematic and static third-order tensors that will be involved in the growth model. The harmonic
decomposition of third-order tensors (symmetrical in their first and second indices) is illustrated in Fig. 2,
following [41]. The mapping T(.) represents the embedding into the space of third-order tensors (these third-
order tensors will be represented in lower-dimensional tensor spaces due to their index symmetry properties).
Any third-order tensor which is symmetrical in the first and second indices can be decomposed into its fully
symmetric part S(i jk) and an asymmetrical part represented here as a second-order tensor with components
Ri j , so that it holds

T(i j)k = S(i jk) + 1

3

(
e jkl Rli + eikl Rl j

)
(2.4)

The tensor with components T(i j)k includes six independent components, namely Txxx , Txxy, Tyyx , Tyyy,
Txyx , Txyy , expressed in the present 2D context and in the Cartesian basis with coordinates (x, y); the fully
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Fig. 2 Kinematic decomposition of third-order tensors into symmetric and asymmetric tensors. The mapping T(.) represents the
embedding into the space of third-order tensors

symmetric third-order tensor with four independent components
(
Sxxx , Sxxy, Syyx , Syyy

)
is next defined in

equality (2.4) as

S(i jk) = 1

3

(
S(i j)k + S(ki) j + S( jk)i

)
(2.5)

The second-order tensor Ri j in (2.4) is the asymmetrical part of the third-order tensor T(i j)k ; it belongs to a
tensor space that can further be decomposed into the space of harmonic second-order tensors denoted H2 and
the space of vectors H1

a , as indicated in Fig. 2.
Note further that the duality in the sense of effective energy of �S and Ke and in the sense of the internal

virtual power of �S and K implies that the hyperstress tensor �S has the same symmetries as K, so that it
holds the index symmetry relations

�S
ijk = �S

jik ≡ �S
(ij)k (2.6)

wherein the parenthesis in the last term denotes the complete symmetry of the enclosed indices. This entails
that �S has six independent components given as the list

�S =
(
�S

xxx, �
S
yyy, �

S
xxy, �

S
yxy, �

S
yxx, �

S
xyy

)
.

The real vector space of completely symmetrical third-order tensors is denoted S(ijk); as shown in Olive and
Auffray [41], this tensor space can be decomposed into the space of harmonic third-order tensors denoted
H

3 (deviator third-order tensors) and a space of vectors H1
a (the isotropic part of fully symmetrical tensors in

S(ijk)), both of which being O(3)-irreducible spaces [41], with O(3) the orthogonal group, i.e., the group of all
isometries of R3. Irreducible tensors are those tensors that cannot be further decomposed into other tensors, so
that they are the elementary bricks of the complete tensor; tensors satisfying this property are called harmonic.
It follows that the integrity basis for isotropic polynomial functions for S(ijk) is equivalent to the integrity basis
of isotropic polynomial functions of the tensor space H3 ⊕ H

1
b.

The fully symmetrical third-order tensor S(ijk) decomposes into the sum

S(i jk) = H(i jk) + 1

5

(
V∇str
i δ( jk) + V∇str

j δ(ik) + V∇str
k δ(i j)

)
(2.7)

wherein H(i jk) is the third-order deviator tensor represented in the space of harmonic third-order tensors H3

as

H(i jk) = S(i jk) − 1

5

(
V∇str
i δ( jk) + V∇str

j δ(ik) + V∇str
k δ(i j)

)
(2.8)

The structure of this decomposition shows that the vector with two independent components V∇str
i representing

the isotropic part of S(ijk)writes

V∇str
i = S(pp)i = (Tppi + 2Tipp) = (3T111 + T221 + 2T122, T112 + 2T211 + 3T222) (2.9)
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In this formulation, the notation V∇str stands for vectors that belong to the space H
1
a . This entails that the

third-order deviator H(i jk) has the two independent components H111, H222, due to the relations

H111 = S111 − 1

5
V∇str
1 = S111 − 1

5
(3T111 + T221 + 2T122) = (2T111 − T221 − 2T122) /5

= (2T111 − 3T122) /5 = −H122

H222 = S222 − 1

5
V∇str
2 = S222 − 1

5
(T112 + 2T211 + 2T222) = (2T222 − T112 − 2T211)/5

= (2T222 − 3T112)/5 = −H112

The second-order tensor with components Ri j , representing the asymmetric part of T(i j)k , is decomposed as a
sum of a harmonic second-order tensors in the vector space H2 representing the deviatoric part of Ri j and a
vector in the space H1

b representing its isotropic part, successively

Ri j = H(i j) + ei jpV
rot
p , Vrot

i = 1

2

(
Tppi − Tipp

)
(2.10)

with ei jp the Levi–Civita permutation tensor and H(i j) a second-order deviator represented in the space of
harmonic second order tensors H2 in the following form

H(i j) = Ri j − ei jpV
rot
p (2.11)

Thus, summarizing previous developments, any third-order symmetrical tensor in 2D space, with components
T(i j)k , is fully characterized by six independent quantities represented in the direct sum of harmonic spaces
H

3 ⊕ H
1
a , H

2 ⊕ H
1
b embedded into third-order tensors with the operator T (.). Note that in the present 2D

context, the antisymmetrical tensor ei jpV rot
p vanishes.

In order to be more specific, we express the geometrical picture of third-order tensors symmetrical in their
first and second indices using the following representation:

T̂
˜

= T̂αk êα ⊗ ek, 1 ≤ α ≤ 3, 1 ≤ k ≤ 2 (2.12)

with the introduced basis of symmetrical tensors therein

êα =
(
1 − δi j√

2
+ δi j

2

)
(
ei ⊗ e j + e j ⊗ ei

)
1 ≤ α ≤ 3 (2.13)

Using orthonormal basis (2.13), the relationship between the matrix components T̂αk and Ti jk is specified by

T̂αk =
{
Ti jk if i = j√
2Ti jk if i �= j

(2.14)

Therefore, we obtain the following matrix representation:

T(ij)k =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

T111 T112

T221 T222

√
2T121

√
2T122

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

(2.15)

The decomposition into a symmetrical and an asymmetrical tensor writes:

T
(
S(ijk)

) =

⎛

⎜
⎜
⎜⎜
⎜
⎝

T111
1
3 (T112 + 2T121)

1
3 (T221 + 2T122) T222

√
2
3 (T112 + 2T121)

√
2
3 (T221 + 2T122)

⎞

⎟
⎟
⎟⎟
⎟
⎠

, T
(
R(ij)

) =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0 2
3 (T112 − T121)

2
3 (T221 − T122) 0

√
2
3 (T121 − T112)

√
2
3 (T122 − T221)

⎞

⎟
⎟
⎟⎟
⎟
⎠

(2.16)
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Symmetrical part (4 independent components) Asymmetrical part (2 independent components)
The harmonic decomposition of the fully symmetrical tensor S(ijk) writes:

T
(
S(ijk)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(
H(ijk)

) =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

1
4 (2T111 − 3T122) − 1

6 (2T222 − 3T112)

− 1
6 (2T111 − 3T122)

1
4 (2T222 − 3T112)

−
√
2

12 (2T222 − 3T112) −
√
2

12
(2T111 − 3T122)

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

+

T
(
V∇str
i

) =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

1
4 (2T111 + 3T122)

1
6 (2T222 + 3T112)

3
15 (2T111 + 3T122)

1
4 (2T222 + 3T112)

√
2

12 (2T222 + 3T112)
√
2

12 (2T111 + 3T122)

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

(2.17)

The decomposition of the asymmetrical part of T(i j)k writes:

T
(
Rij

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(
H(ij)

) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 1
3 (T112 − T121)

1
3 (T221 − T122) 0

√
2
6 (T121 − T112)

√
2
6 (T122 − T221)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

+

T
(
Vrot
i

) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 1
3 (T112 − T121)

1
3 (T221 − T122) 0

√
2
6 (T121 − T112)

√
2
6 (T122 − T221)

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(2.18)

As a summary, the isotropic part of the tensor T(ij)k has the following two independent components:

(2T111 + 3T122) , (2T222 + 3T112)

The deviatoric part of the tensor T(ij)k is characterized by the following four independent components:

T111,T222, (T112 − T121), (T221 − T122).

The second gradient elastic and growth rate of deformation tensors has the same structure as the total second
gradient rate of deformation tensor, so that they are each characterized by two independent components for
their isotropic part and four independent components for their deviatoric part.

2.2 Growth kinematics

We first define an average growth velocity gradient at the first order based on boundary values of the surface
growth velocity field Vg as

Lg := 1

|V|
∫

∂VB

Vg ⊗ NdS (2.19)



www.manaraa.com

1346 Z. Louna et al.

with |V| the volume measure of the two-phase domain including trabecular bone and matrix phase. Relation
(2.19) follows from the fact that the velocity of the interface, vector Vg, has a support restricted to the domain
of the bone tissue boundary ∂VB.

The previous form of Lg leads to the elaboration of the average first gradient rate of growth tensor over the
whole domain as

D1g := 1

2

(
Lg + L

T
g

)
= 1

|V|
∫

∂VB

1

2

(
Vg ⊗ N + N ⊗ Vg

)
dS ≡ D1gB (2.20)

Moreover, application of the divergence theorem to the velocity field in the entire domain gives
∫

V

gradVdX =
∫

∂V

V ⊗ NdS (2.21)

wherein the velocity field V on the inclusion boundary represents the velocity of material points there and
should not be confused with the geometrical interface velocity due to growth, vectorVg. The differenceV−Vg
with support the interface domain ∂VB represents the relative velocity of material points crossing the interface.
The volumetric growth rate is elaborated from the time variation of the volume of grown material, the scalar

�(x, t) := 1
∣∣�g

∣∣
D

Dt

∣∣�g
∣∣ = 1

∣∣�g
∣∣

∫

∂Bε

Vg.NdS (2.22)

Similarly, the first gradient average rate of deformation tensor is elaborated as

D1 := 1

|V|
∫

V

D1dX = 1

|V|
∫

∂V

1

2
(V ⊗ N + N ⊗ V) dS (2.23)

The first gradient average elastic rate of deformation tensor is then defined as the difference between the
average total rate of deformation tensor and its growth part at the first order

D1e := D1 − D1g (2.24)

which would coincide with D in the absence of growth, and it characterizes the stored reversible strains within
the RVE. It is thus associated with residual stresses, namely stresses, that remain within the domain after
unloading.
The volume fractions of bone tissue and surrounding matrix, respectively, elaborated as

fB := VB

V
, fM := VM

V
→ fB + fM = 1 (2.25)

We can further split the overall (averaged) total gradient velocity tensor into separate contributions from the
bone and matrix, as

D1 := 1

V

∫

V

D1dX = 1

V

∫

VB

D1dX + 1

V

∫

VM

D1dX ≡ fBD1B + fMD1M (2.26)

with the bone tissue and matrix, total rates of deformation tensors are defined as

DB := 1

|VB|
∫

VB

DdX, DM := 1

|VM|
∫

VM

DdX (2.27)

A similar decomposition is supposed to hold for the average elastic rate of deformation tensor

D1e := fBD1eB + fMD1eM (2.28)
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From (2.27) and (2.28), the decomposition of the average total velocity gradient into the average growth and
elastic contributions into both growing phase and matrix

D1 = D1g + (
fBD1eB + fMD1eM

)
(2.29)

Now, we turn to the second-order average kinematics. By analogy, the average second gradient rate of growth
can be constructed as the following third-order tensor

K̇g := 1

|V|
∫

∂VB

(
Vg ⊗ ∇x

) ⊗ NdS ≡ 1

|V|
∫

VB

(
Vg ⊗ ∇x

) ⊗ ∇xdV → (
K̇g

)
ijk = (

K̇g
)
ikj (2.30)

Note that there is no way to fully express K̇g versus the growth velocity only, since its microscopic gradient
also intervenes; the transformation of the surface to volume integral in (2.30) is possible since we assume that
surface remodeling is a fully irreversible process so that the surface remodeling field is compatible.
The integrand in the surface integral of the first equality of (2.30) is further elaborated as

Vg ⊗ ∇x ≡ Vg ⊗ ∇S + ∇NV ⊗ N ↔ ∂jVgi = (∇Sj + Nj∇N
)
Vgi (2.31)

denoting therein

∇N := Nj
∂

∂xj
, ∇S := ∇x − Nj∇N (2.32)

successively the normal gradient and tangential derivative. Relying next on the following decomposition of
the velocity field into tangential and normal contributions, viz.

VN := Vg.N → VgT = Vg − VNN (2.33)

a straightforward calculation relying on the decomposition (2.33) then leads to the following simplified form
of the growth velocity gradient in (2.31):

Vg ⊗ ∇x ≡ Vg ⊗ ∇S + ∇NV ⊗ N ↔ ∂jVgi = ∇SjVgTi + NiNj∇NVN − VNLij (2.34)

involving the curvature tensor (otherwise called Weingarten map) L ∈ Lin
(
n, n⊥) viewed as a linear mapping

onto the tangent plane

Lij := −∇SN (2.35)

The symmetrized form of Kg (obtained by symmeterization of the two first indices) leads to the elaboration
of the average second gradient rate of growth tensor over the whole domain as

D2g := 1

2

(
Kg + K

T
g

)
(2.36)

in which the transpose is done on the first and second indices. Due to (2.2) and (2.30), tensor D2g has the
following symmetries:

(
D2g

)
ijk = (

D2g
)
jik = (

D2g
)
ikj (2.37)

Similar decompositions written for the composite domain made of the trabeculae and the surrounding matrix
hold for the second gradient average total rate of deformation tensor, viz.

D2 = D2g + (
fBD2eB + fMD2eM

)
(2.38)

The second gradient elastic rate of deformation then is evaluated as the difference

D2e := D2 − D2g (2.39)

Tensor D2e inherits the symmetries of tensors D2, D2g, so that it holds the following equalities
(
D2e

)
ijk = (

D2e
)
jik = (

D2e
)
ikj (2.40)
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3 Model for external remodeling based on Eshelby stress

At the microscale of the trabecular bone struts, one shall formulate a surface growth model in the framework of
Cauchy bulk and surface elasticity, in order to link the surface remodeling velocity to the identified conjugated
driving force.We recall the main ingredients of the microscale trabecular surface remodeling model elaborated
in Louna et al. [34], sustained by the surface growth models developed in [17,18,25].

From a kinematic point of view, and adopting unless otherwise stated a large strains formalism, the surface
deformation gradient is divided multiplicatively into a surface growth mapping F̃g and an accommodation
mapping F̃a needed to restore the kinematic compatibility; hence, it holds the multiplicative decomposition

F̃ = F̃a.F̃g (3.1)

The surface mapping F̃ := F.� represents the projection of the bulk transformation gradient onto the tangent
plane of ∂�, with � = IS − N ⊗ N the corresponding projector, with the second-order tensor IS denoting the
surface identity tensor, mapping any vector in the tangent plane to the surface to itself. A generic point on the
boundary is denoted. Previous multiplicative decomposition induces a decomposition of the Jacobean of the
total transformation, viz.

J̃ = J̃a J̃g (3.2)

with J̃a := det
(

F̃a

)
; J̃g := det

(
F̃g

)
, respectively, the growth and accommodation Jacobean, such that the

surface densities in the reference and actual configurations, quantities ρ0S, ρS, respectively, are related by

ρ0S = J̃aρS (3.3)

One assumes following [34] that mass is preserved between the intermediate and actual configurations (growth
of mass only occurs between the initial and intermediate configuration).

Mechanical equilibrium of the growing surface writes as the following balance of surface momentum

{
∇S.�̃a − �.KT. ∂W

S

∂N + F̃
T
.fS = 0 on �g

fS = 0 on �g\�t

(3.4)

with R := −∇RN the curvature tensor of the surface, ∇S = �.∇ the surface gradient, and the surface Eshelby
stress therein defined as

�̃a := WsIs − F̃
T
a .T̃ (3.5)

with F̃a and T̃ := ∂Ws

∂F̃a
the elastic surface mapping needed to restore the surface compatibility and the surface

stress, respectively. The surface position and its variation on Sg are denoted XS and δXS, respectively.
The surface mass balance equation expresses as

ρ̇g = �Sρg on �g

�S = Tr
(
∇Ṽg

)
= tr

( ˙̃Fg.F̃
−1
g

)
= B̃

ρ2g
tr (�a(εa) − �0)

ρg (X, t = 0) = ρ0 (X)

(3.6)

with ρS the surface density, �S the rate of mass growth, given by the trace of the surface growth velocity
gradient, and Ṽg the surface growth velocity.
Following developments detailed in Louna et al. [34], the following residual surface dissipation is obtained,
considering the case of a purely mechanical dissipation so that spatial derivation of the surface growth velocity
field makes sense:

∫

Sg

∇S.
(
�̃a

)
.ṼgdS ≥ 0 (3.7)
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The following linear surface growth model is next formulated as a sufficient condition for the dissipation to
be nonnegative,

Ṽg = K̃divS
(
�̃a

)
, K̃ ≥ 0 (3.8)

with K̃ a nonnegative constant determining the surface growth kinetics. The residual dissipation represents the
surface dissipation due to surface growth, deemed as an irreversible contribution.

The bone adaptation algorithm relies on the solution of a linear elasticity problem in the bulk one, coupled
to the surface growth problem, elaborated in [25]. The bulk equilibrium elasticity problem writes as follows:

⎧
⎪⎨

⎪⎩

divσ + ρg = 0 in �

�a = W0I − εTa .σ
U = 0 on �u; σ.N = fS on �t
σ = 2μ (ρ) εa + λ (ρ)Tr (εa) I

(3.9)

The surface constitutive law is prescribed from a surface elastic density per unit volume, assuming an isotropic
growing surface with two material parameters:

{
WS = λ(ρ)

2 Tr(ε̃a)2 + μ (ρ) (ε̃a : ε̃a)

�̃a = WS� − ε̃Ta . ∂W
S

∂ ε̃a

(3.10)

The two bulk and surface problems are solved in a staggered manner; the solution of bulk problem provides
at each time step the stress field on each point in the domain including the surface, leading in turn to an evaluation
of the remodeling velocity given versus the divergence of Eshelby stress.

In this work, we consider a constant reference value for bone formation of the order of ε0 = 2 × 10−3

[39]: This value represents the minimum strain for remodeling to occur. The trabeculae are in fact composed
of packets of remodeled bone of different ages and therefore different degrees of mineralization; this may lead
to a non-uniformmineral distribution within the trabecular strut, which in turn leads to a variation of trabecular
tissue stiffness. Based on this, the homogenized Young’s modulus (GPa) of the trabecular bone tissue versus
the tissue density (g/cm3) is determined as [24,48]

E (ρ) = 6.5ρ2 + 12.3ρ − 26.5 (3.11)

This expression is used within the tissue density range 1.3 ≤ ρ ≤ 2. The Poisson’s ratio of trabecular tissue
material is taken to be 0.3. Furthermore, we adopt in all simulations E (ρ) ε0 as the stress level that promotes
the remodeling.
The evaluation of the average kinematics over the RVE a representative unit cell of trabecular bone relies on
previously written equations. The next sections will be devoted to the setting up of a constitutive growth model
extended up to second gradient effects and to numerical results showing the influence of both the first- and
second-order applied stress on the development of bone growth.

4 Determination of an effective second gradient growth model based on a micromechanical analysis

4.1 Structure of the kinematic tensors in small strains

Since we restrict to a small strain and strain rate framework in the present context of bone remodeling, the
average kinematic first and second gradient tensors E (X) and K (X) introduced in (2.2) can be assimilated to
their small strain versions, and thus, one is entitled to use the symmetrized tensors

ε (X) ≡ 1
2

(
U (X) ⊗ ∇X + U (X) ⊗ ∇X

T
) → εij = εji

k (X) := ε (X) ⊗ ∇X → kijk = εij,k = εji,k = kjik
(4.1)

Note especially that we use in (4.1) the symmetrized form (with respect to the first and second indices) of the
second gradient of the displacement field k.
The center of gravity of the mesoscopic volume element V (X) over which averaging is done is denoted by the
upper case symbol X; it has to be distinguished from the microscopic spatial variable x over which averaging
is done within V (X).



www.manaraa.com

1350 Z. Louna et al.

In the sequel, we shall use the following notations for the first and second gradient total, elastic and growth
mappings in line with (4.1):

E := ε1, k := ε2, Ee := ε1e, ke := ε2e, Eg := ε1g, kg := ε2g (4.2)

Since bone growth at themesoscopic level is a slow process occurring at a typical timescale of a fewweeks, one
can further linearize the average strain rates introduced in (2.2) and in (2.30) through (2.33) and approximate
them by their small strains rates counterparts; it accordingly holds the following approximations (the index 2
in any tensor therein indicates a third-order tensor representative of second gradient effects)

D1 ∼= ε̇1 = Ė, D1g ∼= ε̇1g = Ėg, D1e ∼= ε̇1e = Ėe → D1 = D1g + D1e (4.3)

D2 ∼= ε̇ ⊗ ∇ = ε̇2, D2g ∼= ε̇g ⊗ ∇ = ε̇2g, D2e ∼= ε̇e ⊗ ∇ = ε̇2e → D2 = D2g + D2e

Considering (4.3), this entails the following additive split of the total strain rate tensor and a similar one written
for the second gradient counterpart

Ė = Ėg + Ėe

k̇ = k̇e + k̇g (4.4)

The first- and second-order stress tensors at the mesoscopic level of the unit cell are elaborated as averaging
of their microscopic counterpart defined in Sect. 2.
Due furthermore to small strain rates, time derivatives and spatial averaging commute, so the introduced
averaged second gradient elastic rate of deformation and second gradient growth rate of deformation tensors
write as

D1 = Ė, D1g = Ėg, D1e = Ėe,

D2 = k̇, D2g = k̇g, D2e = k̇e
(4.5)

Remark: The average second gradient rate of elastic deformation tensor is not the spatial gradient of the first
gradient rate of elastic deformation tensor. This third-order tensor is rather evaluated as a difference of the
total second gradient rate of deformation tensor and the average second gradient rate of growth deformation
tensor.

4.2 Second gradient growth model in the framework of irreversible thermodynamics

Since one expects a priori both an effect of first and second gradient kinematic controls applied over the unit
cell, one is entitled to write general constitutive models for bone growth in multiplicative form decoupling the
effect of effective bone density and external stress as follows

(
D1g

D2g

)
= g

(
ρeff

) (h1
(
�ext, �S,ext

)

h2
(
�ext, �S,ext

)
)

(4.6)

with g
(
ρeff

)
and h1

(
�ext, �S,ext

)
, h2

(
�ext, �S,ext

)
, respectively, scalar-valued and tensor-valued functions

of their respective arguments, the form of which shall be specific later on. Note that although the unit cell is
subjected to a kinematic control over its boundary, the effective growth constitutive model is written based
on the stress and hyperstress tensors (computed as reaction ‘forces’) as mechanical triggers of growth. The
obtained average elastic constitutive law evaluates the stress and hyperstress tensors for each microstructural
state (the microstructure is frozen, so that one solves in fact an elastic problem with a kinematic control
including strain and strain gradient).

A proper form of the second gradient growth model is obtained from the expression of the local dissipa-
tion reflected by Clausius–Duhem inequality, adopting the framework of generalized standard materials. The
effective material is characterized by a free energy density sum of elastic and growth contributions, each of
them depending on the average first and second gradient of the elastic and growth average deformation tensors

ψ = ψe (Ee, Ke) + ψg
(
Eg, Kg

)
(4.7)
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Note that the growth deformations are here considered as internal variables associated with a purely dissi-
pative behavior. The elastic potential of deformation involves the effective first and second gradient moduli,
successively the fourth- and sixth-order tensors C, D, so that it writes for a centrosymmetric microstructure

ψe (Ee, Ke) = 1

2
Ee : C : Ee + 1

2
Ke

...D
...Ke (4.8)

The virtual power of internal forces writes after elementary calculations due to the introduced additive split of
the average strain rates as

Pi = −� : ε̇1e − � : ε̇1g − �S...ε̇2e − �S...ε̇2g (4.9)

Recalling the additive split of the strain rate tensor written in (4.3), the virtual power of internal forces writes
after elementary calculations due to the introduced additive split of the average strain rates as

Pi = −� : D1e − � : D1g − �S...D2e − �S...D2g (4.10)

with �, �S the Cauchy stress and hyperstress tensors, respectively, a second-order and a third-order tensor.
The local dissipation writes after identification of the first- and second-order constitutive laws as


 = −Pi − ψ̇ =
(
� : D1e + �S...D2e − ψ̇e

)
+ � : D1g + �S...D2g − ψ̇g ≥ 0 (4.11)

Following the standard Coleman–Noll procedure, the first part of the local dissipation in (4.11) delivers the
constitutive law, due to the introduced elastic potential in (4.8):

� := ∂ψe (Ee, Ke)

Ee
= C : Ee, �S := ∂ψe (Ee, Ke)

Ke
= D

...Ke (4.12)

This delivers the residual dissipation as the following inequality


 = (
� − �g

) : D1g +
(
�S − �S

g

) ...D2g ≥ 0 (4.13)

involving the internal stresses

�g := ∂ψg
(
Eg, Kg

)

Eg
, �S

g := ∂ψg
(
Eg, Kg

)

Kg
.

Adopting next a small strain rates framework that proves realistic for bone, it holds

D1g = ε̇1g, D2g = ε̇2g, Eg := ε1g, kg := ε2g

We further define the thermodynamic driving forces for growth at first and second orders successively as the
second- and third-order tensors

X1g := ∂ψg
(
ε1g, ε2g

)

∂ε1g
; X2g := ∂ψg

(
ε1g, ε2g

)

∂ε2g
(4.14)

The general writing of the present growth model in tensor format shall a priori incorporate a combination of

isotropic and kinematic contributions. Let define the nonnegative scalar p1g := ∫ t
0

(
2
3D1g : D1g

)1/2
dt, pg2 =

∫ t
0

(
1
2D2g

...D2g

)1/2
dt as the cumulative growth strain. The growth part of the free energy density is set as

ψg = ψg
(
Eg := ε1g, kg := ε2g, rg

)
, in which the scalar variable rg is the isotropic growth hardening or

softening variable, which shall have the ability to account for a possible growth recovery, given versus the
effective plastic strain rate as

ṙg = ∂�

∂Rg
= ṗg (4.15)
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Considering in the sequel a small strain rates framework which is realistic considering bone, the thermo-
dynamic variables conjugated to the introduced internal variables

(
Eg := ε1g, kg = E2g := ε2g, rg

)
are the

radius Rg representing the size of the dissipation equipotential and the center of the growth domain (conjugated
to rg) and the second- and third-order tensors X1g, X2g, elaborated as the following partial derivatives:

Rg = ∂ψg
(
Eg, E2g, rg

)

∂rg
, X1g := ∂ψg

(
Eg, E2g, rg

)

∂Eg
, X2g := ∂ψg

(
Eg, E2g, rg

)

∂E2g
(4.16)

These variables successively represent the size and position of the growth domain.
The local dissipation incorporating these driving forces is then obtained following the standard procedure

[33] as


 = (
� − X1g

) : Ėg +
(
�S − X2g

) ... Ė2g − Rgṙg ≥ 0 (4.17)

The dissipation potential is next formally introduced in stress space as

ϕ∗ = �
(
�eq

(
� − X1g, �S − X2g

)
− Rg − σg

)
≡ �eq

(
� − X1g, �S − X2g

)
− Rg − �g (4.18)

In (4.18), we have introduced a possible dependency of the dissipation potential (thus of the growth process)
on the hydrostatic part of the stress, which shall be tested numerically thereafter. The scalar quantity �g
introduced in (4.18) is the growth threshold corresponding to the minimal effective stress below which no
remodeling occurs, corresponding to the lazy zone. The contributions �eq

(
� − X1g

) − Rg and X1g account
successively for isotropic and kinematic growth hardening. The superscript ‘D’ in previous and subsequent
relations denotes the deviator part of the corresponding tensor, elaborated in the present 2D context from the
decomposition of any second-order tensor (2.4). The first- and second-order tensors X1g, X2g are the center
of the actual equipotential surface in stress and hyperstress spaces, respectively, accounting for a possible
kinematic growth hardening.
Isotropic growth hardening means that the radius of the equipotential surface changes, whereas its center is
fixed; kinematic growth hardening means that the radius is fixed, whereas the center is moving.
We select the following linear combination of the two invariants in the definition of the effective stress

�eq :=
{
α J1

(
� − X1g

) + β J2
(
� − X1g

) + γ J1
(
�S − X2g

)
+ δ J2

(
�S − X2g

)}1/2
(4.19)

The equivalent stress is defined in (4.19) as the nonnegative scalar incorporating both the stress and hyperstress
tensors through the first and second invariants of the differences

(
� − X1g

)
,
(
�S − X2g

)
, respectively, the

scalar quantities

J1
(
� − X1g

) = Tr
(
� − X1g

)
,

J2
(
� − X1g

) =
(
3
2

(
� − X1g

)D : (� − X1g
)D)1/2

J1
(
�S − X2g

) = (
V∇str
i

(
�S − X2g

)
.V∇str

i

(
�S − X2g

) + Vrot
i

(
�S − X2g

)
.Vrot

i

(
�S − X2g

))1/2

J2
(
�S − X2g

) =
(

1
2

(
�S − X2g

)D ...
(
�S − X2g

)D
)1/2

(4.20)

The first invariant of a third-order tensor is constructed from its non-deviator parts, so that V∇str
i , Vrot

i denote
here the vector parts of the harmonic decomposition of the third-order tensor

(
�S − X2g

)
.

In the elaboration of the second invariant of third-order tensors, we rely on the previously established harmonic

decomposition (2.7), (2.17), so that the deviator
(
�S − X2g

)D
includes the following independent components

(as summarized at the end of Sect. 2.1):

H111

((
�S − X2g

)

(i jk)

)
=

(
2
(
�S − X2g

)

111
− 3

(
�S − X2g

)

122

)
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and

H222

((
�S − X2g

)

(i jk)

)
=

(
2
(
�S − X2g

)

222
− 3

(
�S − X2g

)

112

)

The introduced definition of the second stress invariants J2
(
� − X1g), J2(�S − X2g

)
is such that it delivers

the expression of the uniaxial component in a pure tensile test. The growth model is then elaborated from a
growth potential �g ( f ), a scalar-valued function of the driving force of von Mises type depending on the two
parameters K, n, leading to the dissipation potential ϕ∗:

�g (f) := K

n + 1

(
f

K

)n+1

→ ϕ∗ = �g

(
�eq

(
� − X1g, �

S − X2g

)
− Rg − �g

)

:= K

n + 1

(
�eq − Rg − �g

K

)n+1

(4.21)

The previous writing of the growth potential function representing a set of imbricate growth surfaces entails
the relation linking the average first and second gradient rate of growth tensor to the conjugated driving force
appearing in the local dissipation, inequality (4.7). The strength of the growth process can be accordingly be
quantified by the value of the scalar growth potential �g, low values corresponding to slow growth process,
the growth velocity increasing with the value of �g up to a rate independent growth process for very high
values of the first and second gradient growth rates.

Based on the effective homogenized kinematics elaborated in Sect. 2 and the first part of Sect. 4, we
search for a relation between the average rate of growth tensor and the mesoscopic driving forces, namely the
applied stress tensor �, to the representative volume element of bone in the form of the decoupled (due to the
assumption of a centrosymmetric unit cell) functional dependency

D1g = ε̇1g = h1
(
�ext) , D2g = ε̇2g = h2

(
�S,ext

)
(4.22)

in which the two tensor-valued functions of the stress and hyperstress tensors h1
(
�ext

)
, h2

(
�S,ext

)
shall be

elaborated later on in this contribution. The effective density shall not appear as a parameter since our model
will be constructed based on real bone samples for which the density is nearly constant.

The first and second gradient average growth rate tensors are obtained from the viscoplastic type dissipation
potential ϕ∗ based on the normality rule as follows:

D1g = ∂ϕ∗(�,X1g,R1g,�
S,X2g,R2g

)

∂�
= ∂ϕ∗(�,X1g,R1g,�

S,X2g,R2g
)

∂�eq

∂�eq
∂�

,

∂�eq
∂�

= ∂�eq

∂ J1(�−X1g)
∂ J1(�−X1g)

∂�
+ ∂�eq

∂ J2(�−X1g)
∂ J2(�−X1g)

∂�
=

{
αI + 3

2β
(�−X1g)

D

J2(�−X1g)

}/
�eq

⇒ D1g = ṗ1g

{
α J1

(
� − X1g

)
I + 3

2β
(�−X1g)

D

J2(�−X1g)

}/
�eq ,

D2g = ∂ϕ∗(�,X1g,Rg,�
S,X2g,R2g

)

∂�S = ∂ϕ∗(�,X1g,R1g,�
S,X2g,R2g

)

∂�eq

∂�eq

∂�S = ṗ2g

{
γ I + 1

2δ

(
�S−X2g

)D

J2
(
�S−X2g

)

}/
�eq

(4.23)

In previous derivations, we have accounted for the relations:

∂ J1(�−X1g)
∂�

= I, ∂ J2(�−X1g)
∂�

= 3
2

(�−X1g)
D

J2(�−X1g)
∂ J1(�−X1g)

∂�s = 0,
∂ J1(�s−X2g)

∂�s = I, ∂ J2(�s−X2g)
∂�s = 1

2
(�s−X2g)

D

J2(�s−X2g)
∂�eq
∂�s = ∂�eq

∂ J2(�s−X2g)
∂ J2(�s−X2g)

∂�s = 1
2δ

(�s−X2g)
D

J2(�s−X2g)�eq

(4.24)

The scalar quantity
∂�(�s,X2g Rg)

∂�eq
involved in (4.14) has been evaluated as follows:

1

2
D2g : D2g =

{
∂�

(
�s, X2g Rg

)

∂�eq

}2

(4.25)
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This entails that the effective growth strain rate receives the following expression:

ṗ2g :=
(
1

2
D2g : D2g

)1/2

= ∂�
(
�s, X2g Rg

)

∂�eq
(4.26)

The internal variables
(
αg, rg

)
associated with the driving forces Xg, Rg are then given by the following

normality rule:

α̇1g = − ∂�(�,X1g,�
s,X2g,Rg)

∂X1g
= ∂�(�,X1g,�

s,X2g,Rg)
∂�

,

α̇2g = − ∂�(�,X1g,�
s,X2g,Rg)

∂X2g
= ∂�(�,X1g,�

s,X2g,Rg)
∂�s ,

ṙg = − ∂�(�,X1g,�
s,X2g,Rg)

∂Rg
= ∂�(�,X1g,�

s,X2g,Rg)
∂�eq

(4.27)

These equalities obtained by considering the specific form of the dissipation potential in (4.21) (tensors
�, �S, X1g, X2g intervene through their difference, and similarly for quantities �eq and Rg) ensure the
positive nature of the local dissipation, inequality (4.17).

We shall in the sequel consider a perfect viscoplastic model without isotropic hardening. Time is indeed
in the present model not a physical parameter influencing directly growth, but instead the applied stress
(or displacement) over the RUC dictates the growth rate, and there is no time hardening. We accordingly
neglect isotropic hardening (in coherence with viscoplastic models neglecting primary creep, [33]), since the
microscopic external remodeling law (3.8) entails that growth develops at constant applied stress, provided
the effective stress is located outside the lazy zone described by the scalar parameter �g. The average growth
model can accordingly be considered as a pure viscoplastic model in which growth hardening can be discarded.
In the next section, we shall identify the effective first- and second-ordermoduli of the considered 2D trabecular
bone sample (Fig. 1b) at both initial and growth conditions.

5 Determination of homogenized first and second gradient stiffness tensors for the initial and grown
trabecular bone

5.1 Basic equations and constitutive relations

In classical elasticity theory, only the first displacement gradient is involved and all the higher-order displace-
ment gradients are neglected in measuring the deformations. In this situation, the stress at a material point is
linked to strain through the classical elasticity tensor. The strain gradient elasticity is a kinematic enhancement
of classical elasticity taking into account the second gradient of deformation in the mechanical formulation. In
this case, the constitutive law provides the symmetric Cauchy stress tensor� and the hyperstress tensor�S. In
the case where the microstructure of a material exhibits central symmetry, the first- and second-order tensors�

and�S are related toε = 1
2

(
u ⊗ ∇ + u ⊗ ∇T

)
andk = ε⊗∇ through the followinggeneral constitutive law for

a homogeneous second-order grade continuum written successively in tensor format and with index notation:
� = C : ε ⇔ �i j = Ci jklεkl

�S = D
...k ⇔ �S

i jk = Di jklmnklmn
(5.1)

with Ci jlm the classical fourth-order elastic tensor and Di jklmn the sixth-order second stiffness elastic tensor
(their components).
In two dimensions (2D), the displacement field writes as the vector u = [

ux , uy
]T, which entails the following

strain tensor in vector form

ε =
[
εxx = ux,x , εyy = uy,y, εxy = εyx = 1

2

(
uy,x + ux,y

)
]T

(5.2)

In the same way, the strain gradient field determines a tensor with the following six independent components
represented in vector format accounting for its index symmetries as

k= [
εxx,x, εyy,y, εxx,y, εyy,x, εxy,x, εxy,y

]T =
[
ux,xx, uy,yy, ux,xy, uy,xy,

1

2

(
uy,xx+ux,xy

)
,
1

2

(
uy,xy+ux,yy

)
]T

(5.3)
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The stress and hyperstress for the effective 2D strain gradient continuum can be defined as

� = [
�xx , �yy, �xy

]T
, �S =

[
�S

xxx , �
S
yyy, �

S
xxy, �

S
yxy, �

S
yxx , �

S
xyy

]T
(5.4)

The effective first- and second-order elastic moduli are identified for the growing bone tissue at the mesoscopic
level in the next section.

5.2 Identification of the first and second equivalent elastic moduli for the initial and grown trabecular
microstructures

This section aims at the determination of the effective constitutive coefficients of the strain gradient continuum
from the RVE response of trabecular bone network.We design different boundary conditions for the determina-
tion of the components of the constitutive (rigidity) constants over the RVE sample (Fig. 1b) with boundary∂�.
In each case, we force the RVE in the present 2D context to bear the designed specific deformations
ε = [

εxx , εyy, εxy
]
, k = [

kxxx , kyyy, kxxy, kyxy, kyxx , kxyy
]
and compute numerically the total elastic strain

energyURV E stored in the unit cell under the corresponding boundary conditions. For more details, the reader
is referred to Goda and Ganghoffer [24].
The numerical procedure used here to identify the first- and second-order gradient elastic moduli is as follows:
The total strain energy stored in the RVE is equated with the energy of an equivalent homogeneous strain
gradient continuum; thus,

URV E = Ustrain gradient = VRV E

2

[
εi jCi jklεkl + ki jk Di jklmnklmn

]
(5.5)

where VRV E = |�| is the volume of the RVE. The left-hand side in (5.5) is the total elastic strain energy stored
in the RVE, while the right-hand side is the expression of the energy of the postulated effective strain gradient
continuum.
In order to evaluate the components of the first- and second- gradient elasticity stiffness tensors C and D for
the underlying RVE of trabecular bone, we conduct a set of ten elementary tests described in Appendix.

It is convenient to summarize the set of equations of the field variables concerning the first and second
gradient static and growth scheme. Box 1 illustrates the equations corresponding to equilibrium at the surface
and in the bulk, the surface constitutive law, the surface density, the surface growth model, and the definition
of the homogenized static model for the initial and grown structure based on strain gradient. Based on this,
Box 2 exposes the definition of the first- and second-order average kinematics, the effective growth strain and
strain gradient rate, and the constitutive model for the growing bone structure.
Accounting for both first and second-order deformation gradients, simulations for the purpose of evaluating
both static and growth effective properties are done over the considered trabecular bone RUC with the open-
source FE software FreeFem++. These simulations are based on the weak form of the set of field equations
given in Box 1 and Box 2.

In order to illustrate the application of bone adaptation in numerical computations based on strain gradi-
ent framework, bone internal and external remodeling at trabecular level is predicted, starting from an initial
geometry with a uniform density distribution of 1500 kg/m3. The local distributions of the equivalent strain
(a scalar measure of the strain tensor) in the considered trabecular bone sample are illustrated in Fig. 3a, b for
the load cases corresponding to first gradient of displacement (uniaxial extension, shear), and in Fig. 4a–f for
the load cases corresponding to the strain gradient with components

kxxx = εxx,x , kyyy = εyy,y, kxxy = εxx,y, kyxy = εyy,x , kyxx = εxy,x , kxyy = εxy,y .

As a general trend, we observe from Figs. 3 and 4 that high surface strains give locally rise to significant bone
growth (formation). For any load applied to the trabecular structure whether the first or second gradient of
displacement, local strains in the surfaces become very high at the conjunction of the trabeculae. These strains
in turn stimulate bone formation that occurs mainly along the trabecular edges. Therefore, we conclude that
bone growth most likely occurs at sites of high mechanical strain.
The equivalent first and second gradient stiffness tensors C and D coefficients (Tables 1 and 2) have been
computed at the initial state when growth has not yet occurred. We notice that the RUC is not completely
isotropic; the identified initial first- and second-order stiffness components C11 and D111 are slightly different
than C22 and D222, reflecting the overall orthotropy of the bone microstructure.
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Box 1 Summary of the equations used to simulate bone remodeling along with equations to evaluate the first and second gradient
equivalent elastic moduli in the static case and growth situation

Since we aim at simulating bone remodeling from the assumed initial configuration of trabecular bone RUC,
the effective first and second gradient moduli are expected to evolve with the grown state of trabecular bone
structure. Thus, we repeat the previous identification of the homogenized first and second gradient stiffness
coefficients at different time steps associatedwith different grown configurations. The evolution of the effective
first- and second-order rigidity components versus the remodeling time step is given in Fig. 5. It is actually
observed that throughout the growth process the effective first gradient moduli (tensile and shear coefficients)
increase faster than the second gradient coefficients Dijk. This shows that second gradient moduli are less
influenced by growth in comparison with the first gradient effective moduli.

The characteristic length is an essential parameter in the strain gradient continua. The characteristic length
indicates the nature and significance of non-classical phenomena in the response of a mediumwith microstruc-
ture like in trabecular bone. Therefore, the characteristic lengths are next identified from the homogenized first
and second gradient stiffness moduli. In 3D situation, six internal characteristic lengths associated with the
independent classical moduli Cij can be identified by the following relation (see [24]):

lαβ =
(∑3

r=1 Dαrβr

Cαβ

)1/2

(5.6)
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Box 2 Summary of the equations describing the effective growth model based on the strain gradient theory

This equality follows from themajor symmetry of the secondgradient elasticity coefficients. Thematerial length
parameters appear as the ratio of second-order to first order equivalent moduli. Due to the present 2D context,
three internal lengths associated with the independent classical moduli can then be identified by the relations

l11 =
(
D111 + D112

C11

)1/2

, l22 =
(
D212 + D222

C22

)1/2

, l12 =
(
D112 + D122

C33

)1/2

(5.7)

In order to assess the relevance of a strain gradient continuum model, the characteristic lengths for the strain
gradient behavior, described by Eq. (5.7), are evaluated versus the remodeling time. The ratio of the charac-
teristic internal lengths to the characteristic unit cell size, quantity L , is plotted in Fig. 6 versus the remod-
eling time step to assess the strength of the strain gradient effect. It appears that those ratios have of an
order of magnitude close to unity, indicating that strain gradient effects indeed impact the continuum behav-
ior.

Regarding the evolution behavior of the characteristic lengths versus the remodeling time (Fig. 6), it is
actually noticed that throughout the growth process the internal lengths decrease with remodeling time; in
addition, the characteristic length associated with shear deformation mode l12 decreases faster than the one
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Fig. 3 Strain distributions in the RUC of trabecular bone, a Uniaxial tension along x and b Simple shear

associated with the tensile mode, scalar l11. We can explain the overall decrease in the internal length with
ongoing remodeling by the fact that during the growth process the effective first gradient moduli Cij increase
faster than the second gradient moduli Dijk with remodeling time as shown previously in Fig. 5; moreover, the
shear effective rigidity is increasing faster than the effective tensile rigidity, as shown in Fig. 5 (left plot).

5.3 Effective second gradient moduli of a two-phase bone structure including marrow

In order to improve our understanding of the trabecular bone effective mechanical behavior, it is interesting
to determine the effects of the presence of bone marrow on the effective first and second gradient moduli of
trabecular bone. This section focuses on the mechanical behavior analysis of trabecular bone at the mesoscopic
scale under prescribed first- and second-order boundary conditions, paying attention to trabecular bone with
bone marrow filling the porosities.

In Fig. 7, we represent trabecular bone as 2D structure, consisting of hard tissue (bone trabeculae) and soft
tissue (bonemarrow). To well explain the bonemarrow contribution on the effective strain gradient mechanical
behavior of trabecular bone at the initial and growth state, FE investigations using the FE code Freefem++
have been performed to capture the interaction between bone and marrow under various loading conditions.

We assume that both material phases are homogeneous, linear elastic, and isotropic. Bone tissue is assigned
to have a Young’s modulus determined from Eq. (3.11) and a Poisson ratio of 0.3, while the cavities are filled
with soft material with a Young’s modulus of 2 MPa and a Poisson ratio of 0.167 [31]. The calculated
components of the effective initial first and second gradient stiffness tensors obtained in situations including
and excluding bone marrow are summarized in Table 3.

When analyzing the numerically quantified bone marrow effects, we observe that bone marrow contributes
to an overall insignificant increase in the effective initial first and second gradient mechanical properties. The
maximum increase in moduli occurs for the biaxial and shearing modes, followed by the increase in the second
gradient components D211 and D122. This can be explained as the presence of bone marrow causes stiffening
effect under these tests. In the situation of bone marrow effect on the effective moduli during the growth
process, we observe that the first and second gradient moduli follow similar contributions by a small overall
increase.

5.4 Identification of the material parameters of the constitutive law for growing bone

We search a relationship between the average rate of growth tensor and the rate of elastic deformation ten-
sor with the applied stress and hyperstress tensors �ext, �S,ext, as expressed in relations (4.6). The effec-
tive stress and hyperstress are evaluated from the average strain and strain gradient imposed over the RUC
simply from the computed effective moduli (the average strains and strain gradients are imposed over the
RUC).
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Fig. 4 Strain distributions in the RUC of trabecular bone due to the load cases corresponding to the strain gradient. a kxxx = εxx,x ,
b kyyy = εyy,y , c kxxy = εxx,y , d kyxy = εyy,x , e kyxx = εxy,x , and f kxyy = εxy,y

In order to test a possible asymmetry between traction and compression and thus the existence of a
growth kinematic hardening, we record over RUC the evolution of component of the average second gra-
dient rate of growth tensor

(
D2g

)
111 versus the corresponding hyperstress component �S

111 in both tensile
and compression simulations along direction x. The stress–strain response shows a symmetric response
(Fig. 8), so one can conclude that no kinematic hardening is present; the same conclusion is reached for
tensile and compressive loads applied along the x direction—the plots are, however, not shown. This find-
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Table 1 Effective initial first gradient stiffness coefficients identified numerically. Unit is MPa

C11 C22 C12 C33

245.41 243.56 49.88 64.86

Table 2 Effective initial second gradient stiffness coefficients identified numerically. Units is N

D111 D222 D112 D212 D211 D122

915.6 1035.0 2567.8 2913.4 4068.6 4211.8

0 10 20 30 40 50 60
40

80

120

160

200

240

280

320

C
ij(M

Pa
)

Remodeling time steps

 C11
 C33

0 10 20 30 40 50 60

1000

2000

3000

4000

Remodeling time steps

D
ijk

(N
)

 D111

 D112

 D122

Fig. 5 First and second gradient elasticity stiffness tensors Cij (left) and Dijk (right) versus the remodeling time step
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Fig. 6 Ratio of the characteristic strain gradient lengths to the unit cell size of trabecular bone versus the remodeling time step

ing extends a similar absence of kinematic hardening already observed for the first displacement gradient
model [35].

Time is in the present model not a physical parameter influencing directly growth, but instead the applied
stress over the RUC dictates the growth rate, and there is no time hardening. We accordingly neglect isotropic
hardening (this is consistent with viscoplastic models neglecting primary creep, Lemaitre and Chaboche [33]).
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Fig. 7 Representation of trabecular bone RUC composed of bony trabecular struts and marrow-filled cavities. a Bone tissue with
marrow and b bone tissue alone

Table 3 Effective initial first and second gradient moduli (Cij and Dijk) of trabecular bone RUC with and without bone marrow

Cij (MPa) C11 C22 C12 C33

With bone marrow 247.70 245.84 50.82 66.20
Without bone marrow 245.41 243.56 49.88 64.86
Relative difference (%) 0.93 0.93 2 2

Dijk (N) D111 D222 D112 D212 D211 D122

With bone marrow 922.3 1040.6 2585.6 2930 4102.0 4247
Without bone marrow 915.6 1035.0 2567.8 2913.4 4068.6 4211.8
Relative difference (%) 0.73 0.54 0.73 0.60 0.82 0.84
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Fig. 8 Evolution of component of the average second gradient rate of growth tensor
(
D2g

)
111 versus the corresponding hyperstress

component �S
111 under tension and compression over 60 growth time steps



www.manaraa.com

1362 Z. Louna et al.

Fig. 9 Components of the third-order deviator tensor Hijk of D2g versus the corresponding components of the hyperstress deviator

Fig. 10 First and second invariant of D2g versus the first and second invariants of the hyperstress tensor

A nearly linear evolution of two components of the deviator of the average second gradient rate of growth
tensor is obtained, as shown in Fig. 9. Instead of looking at the evolution of individual components of the second
gradient rate of growth tensor, we consider the condensed information provided by its first and second invariant
in Fig. 10.We observe (Fig. 10) a nearly linear influence of the hydrostatic and deviatoric part of the hyperstress
versus (traduced by the first and second invariants, respectively) the corresponding kinematic invariants. The
isotropic and deviatoric parts of the average second gradient rate of growth tensor show quasi-linear evolutions
versus the corresponding components of the average hyperstress tensor.

6 Identification of a strain gradient remodeling constitutive law for trabecular bone

We identify the six material parameters α, β, γ, δ, K , N of the constitutive model developed in Sect. 4 and
summarizedby the set of equations given inBox2byminimizing themean square deviation between the compo-
nents of the averagefirst and secondgradient of growth tensors

(
D1g

)
11 ,

(
D1g

)
22 ,

(
D1g

)
12 ,

(
D2g

)
111 ,

(
D2g

)
222 ,
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Table 4 Set of material parameters for the identified second gradient constitutive law of growing bone

α β γ δ K (MPa) N

−3.48E−4 2.57 −4.86E−9 1.36 1.09 1.58

Fig. 11 Evolution of two components of the deviator
(
D2g

)D
versus their counterpart for the driving hyperstress deviator

(
�S − X2g

)D
predicted by the model and by direct FE simulations

(
D2g

)
112 ,

(
D2g

)
212 ,

(
D2g

)
211 ,

(
D2g

)
122 predictedby the constitutivemodel—denoted

(
D1g

)CM
i j ,

(
D2g

)CM
i jk =

(
D2g

)CM
ik j (α, β, γ, δ, K , N ) , i, j, k = 1 . . . 2—and the same components evaluated by the FE simulations –

denoted
(
D1g

)FE
i j ,

(
D2g

)FE
i jk , i, j, k = 1 . . . 2, so that we select the following function to be minimized over

the searched parameters:

Min
(α,β,γ,δ,K ,N )

Ntest∑

k=1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[(
D1g

)FE
11 − (

D1g
)CM
11

]2 +
[(

D1g
)FE
22 − (

D1g
)CM
22

]2 +
[(

D1g
)FE
12 − (

D1g
)CM
12

]2

+

⎧
⎪⎨

⎪⎩

[(
D2g

)FE
111 − (

D2g
)CM
111

]2 +
[(

D2g
)FE
222 − (

D2g
)CM
222

]2 +
[(

D2g
)FE
112 − (

D2g
)CM
112

]2

[(
D2g

)FE
212 − (

D2g
)CM
212

]2 +
[(

D2g
)FE
211 − (

D2g
)CM
211

]2 +
[(

D2g
)FE
122 − (

D2g
)CM
122

]2

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
k

For each deformation mode (uniaxial tension along x and y, simple shear, and strain gradient components
kxxx , kyyy , kxxy, kyxy, kyxx , and kxyy), five different tests corresponding to five stress and hyperstress levels
are performed, so that previous functional is minimized over a total of Ntest = 45 tests. This leads to the
identification of the following set of calibrated parameters indicated in Table 4.
The comparison of the evolution of the two components of the deviator

(
D2g

)
112 and

(
D2g

)
122 versus their

counterpart for the driving hyperstress deviator predicted by the constitutive model and by direct FE simu-

lations for a strain gradient loading (applied to the representative unit cell) combining
(
�S − X2g

)D
122 and

(
�S − X2g

)D
112 shows a very good agreement (Fig. 11). This highlights the capability of the identified second

gradient growth model to predict the response of trabecular bone microstructures for general loadings at the
scale of the representative unit cell.

7 Conclusion

Constitutivemodels for bone remodeling are constructed in the present contribution, based onmicromechanical
analyses at the scale of a representative volume element consisting of individual trabeculae defining the
representative unit cell, accounting for both first- and second-order deformation gradients. On the microscale,
trabeculae undergo apposition of new bone modeled by a surface growth velocity field driven by a mechanical
stimulus identified to the surface divergence of an Eshelby-like tensor. The static and evolutive effective
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properties of a periodic network of bone trabeculae are evaluated by combining amethodology for the evaluation
of the average kinematic and static variables over a unit cell and numerical simulations with controlled imposed
strain and strain gradient rates. The formulated effective growth constitutive law at the scale of the homogenized
set of trabeculae (defining themesoscopic level) relates the average first and second gradient growth strain rates
to the homogenized stress and hyperstress tensors. The constitutive model is identified within the framework
of the thermodynamics of irreversible processes, adopting a split of the kinematic and static tensors into their
deviator and hydrostatic contributions based on the harmonic decomposition of the tensor space of third-order
tensors.
The obtained evolutions of the first and second invariants of the average strain gradient rate of growth tensor
versus similar invariants of the hyperstress tensor quantify the strength and importance of second gradient
effects on the overall remodeling process. Numerical simulations further show that the marrow phase has a
weak influence on the effective first and second gradientmoduli (in comparisonwith the sole trabecular network
in the absence of the marrow phase), and thus, it does weakly influence the overall remodeling process. The
identified growth model accounting for strain gradient effects shall be used in zones where strain gradient
effects are pronounced [16].
The formulated mesoscopic growth model shall prove useful for simulating bone sample microstructural
evolutions at the macrolevel, with a good compromise between numerical efficiency and accuracy.

Appendix: Set of virtual tests designed for the determination of the effective first and second gradient
effective moduli of the trabecular bone samples

The following first four tests are constructed to determine the first gradient stiffness tensor C as follows:
Uniaxial extension for C11: When a uniform strain εxx = 1 (chosen as unity for simplicity) is applied on the
unit cell’s boundary, the displacement boundary conditions are

ux = x, uy = 0 on ∂�

This leads to identify C11 as

C11 = 2URV E/VRV R

Uniaxial extension for C22: When the uniform strain εyy = 1 is applied the unit cell’s boundary, the displace-
ment boundary conditions are

ux = 0, uy = y on ∂�

which gives

C22 = 2URV E/VRV E

Biaxial extension for C12: When the uniform strain εxx = εyy = 1 is applied on the unit cell’s boundary, the
displacement boundary conditions are

ux = x, uy = y on ∂�

which yields

C12 = (
2URV E/VRV E − C11 − C22

)
/2

Shear deformation for C33: When the uniform shear strain εxy = 1 is applied on the unit cell’s boundary, the
displacement boundary conditions are

ux = y/2, uy = x/2 on ∂�

which yields

C33 = 2URV E/VRV E

We next evaluate the components of the second gradient stiffness tensor D; for this purpose, we perform the
following six elementary tests:
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For D111: We apply the strain gradient component kxxx = εxx,x = ux,xx = 1 to the unit cell’s boundary, and
thus, the displacement boundary conditions are

ux = x2/2, uy = 0 on ∂�

which gives

D111 = 2URV E/VRV E − C11x
2

For D222: We apply the strain gradient component kyyy = εyy,y = uy,yy = 1to the unit cell’s boundary, and
thus, the displacement boundary conditions are

ux = 0, uy = y2/2 on ∂�

which gives

D222 = 2URV E/VRV E − C22y
2

For D112: We apply the strain gradient component kxxy = εxx,y = ux,xy = 1 to the unit cell’s boundary, and
thus, the corresponding boundary conditions are

ux = xy, uy = 0 on ∂�

which gives

D112 = 2URV E/VRV E − C11y
2

For D212: We apply the strain gradient component kyxy = εyy,x = uy,xy = 1 to the unit cell’s boundary, and
thus, the displacement boundary conditions are

ux = 0, uy = xy on ∂�

which gives

D212 = 2URV E/VRV E − C22x
2

For D211: We apply the strain gradient component kyxx = εxy,x = 1/2
(
uy,xx + ux,xy

) = 1 to the unit cell’s
boundary, and thus, the displacement boundary conditions are

ux = xy, uy = x2/2 on ∂�

which gives

D211 = 2URV E/VRV E − C11y
2

For D122: We apply the strain gradient component kxyy = εxy,y = 1/2
(
uy,xy + ux,yy

) = 1 to the unit cell’s
boundary, and thus, the displacement boundary conditions are

ux = y2/2, uy = xy on ∂�

which gives

D122 = 2URV E/VRV E − C22x
2

The derived second gradient elasticity tensor coefficients do in fact not depend on the choice the origin of the
coordinate system with respect to the centroid of the tested RVE. When the origin of the coordinate axes is
selected as the centroid of the tested RVE, the additional geometrical terms involving the coordinate do vanish.
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